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Approximation-based methods, such as the cubetree algorithm, have proven to be significantly faster than
traditional methods for complex force evaluations near small irregular bodies. Such methods also hold the promise of
simplifying the inclusion of experimental data to update the force model. However, the cubetree algorithm does not
preserve intrinsic properties of the gravitational force such as continuity, divergence freedom, or exactness. These
properties may be needed for trajectory optimization, for the use of geometric (e.g., symplectic) integrators for long-
term propagation, and for other trajectory design problems. This paper presents several adaptive schemes
preserving global continuity, exactness, or divergence freedom, and discusses the difficulties involved in preserving

all of these properties globally.

1. Introduction

ITH the continuing increase in computing power, large-scale

problems, which were considered very difficult in the past
decade, have now become tractable. In particular, optimization
methods based on genetic algorithms have recently attracted many
researchers in astrodynamics [1,2], and simulations involving hun-
dreds of thousands of trajectory propagations have recently appeared
[3.4]. However, there is still a need to improve the core algorithms,
such as ordinary differential equation integration and force function
evaluation, for several reasons.

First, faster elementary methods mean that larger, more realistic
systems can be considered. In particular, large simulations generally
assume fairly simple dynamics and are more challenging for com-
plex force models such as small-body environments. Second, as
autonomous navigation becomes a reality, there is an increased
demand for fast onboard computational tools [3]. Finally, current
research in numerical integration emphasizes the importance of
preserving fundamental geometric structures present in the modeled
dynamics. Such issues have appeared to be of prime importance for
long-term integration, such as encountered in astronomy and in the
analysis of numerical experiments.

Recently, a novel numerical scheme (the cubetree algorithm) for
the fast evaluation of gravitational force around irregular bodies has
been introduced by the authors [6] and shown to provide a significant
speed improvement over other methods. The scheme exploits the
availability of large storage capacities to reduce the online compu-
tations. Specifically, by locally interpolating the force field around a
small body, this algorithm decreased computational effort of space-
craft trajectories integration by a factor of 100. Although such results
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are of particular interest for large simulations, such as Monte Carlo
analysis, the method may also be useful for smaller, onboard compu-
tation due to its relatively light load on the processor. However, the
method has not been optimized and requires a significant memory
footprint. Also, several desirable mathematical properties of gravi-
tational force have not been considered and are not preserved by the
cubetree algorithm.

In this paper some of these issues are addressed by developing
improved approximation schemes for potential energy and force
representation around small irregular bodies. In particular, the
following questions are considered.

Smoothness: When several interpolation domains are considered,
discontinuities at the boundary represent a fundamental obstacle for
theoretical investigation due to the continuous nature of the force
represented. These discontinuities may also lead to a deterioration of
integration performance.

Exactness: All conservative forces are the gradient of some
potential field. The cubetree method presented in [6] does not respect
this qualitative feature. This is especially important for long-term
simulation where qualitative features of the trajectories are of
primary interest.

Divergence freedom: The force of gravitation is divergence free.
This property has many theoretical implications, but is not neces-
sarily preserved by standard interpolation schemes.

Efficiency: What interpolation schemes allow for smaller memory
footprint while ensuring sufficient accuracy? This question may be
addressed in both the approximation method and the choice of
subdivision technique used for partitioning the space around the
body.

Note that addressing the first two issues is a necessary step for the
application of geometric integrators such as symplectic integrators.
Although geometric integrators have been applied to problems with
discontinuities and dissipation, the structure of discontinuities or
dissipation is part of the theoretical framework in those cases [7]. In
an approximation scheme, like the cubetree method, it is due to the
approximation of the force field.

To tackle the aforementioned issues, several modifications of the
cubetree algorithm have been considered. In Sec. I1I, a regularization
of cubetree that produces a continuous approximation is presented.
While easily implementable, this solution requires tighter tolerances
on the approximated function, which increases the memory footprint
of the model. Sec. IV presents a different approach based on least-
squares approximation using hierarchical B-spline refinements,
which provided a less stringent error requirement while addressing
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both continuity and exactness. Finally, in Sec. V, divergence-free
approximations and the challenges in obtaining all three properties at
the same time globally are discussed.

II. Cubetree Algorithm

To provide a basis for comparison and to better understand the
challenges in addressing the preceding issues, a review of the
cubetree algorithm [6] is presented in Sec. ILLA. Then, obvious
generalizations and inherent difficulties associated with this class of
algorithms are discussed. Further details on the description, imple-
mentation, and performance of cubetree can be found in [6].

A. Cubetree Algorithm

The cubetree algorithm provides an efficient method for approxi-
mating the gravitational force generated by a small body in its
immediate neighborhood [i.e., the space that is not represented
efficiently by spherical harmonics, namely, the region between the
surface and the sphere of convergence of the (exterior) spherical
harmonics], which allows for a fast evaluation of the gravitational
forces in such regions. The method consists of two parts: 1) a local
approximation scheme for building a force model in a small cuboid
domain, and 2) a spatial data structure to distribute these local
approximations adaptively.

Local force (or potential) approximation is achieved by
polynomial interpolation at the tensor product of Gauss—
Legendre—Lobatto points [8]; see Fig. 1. This forms a model for a
single cuboid region near a small body. A spatial data structure,
called an octree, creates a complete approximation for the entire
domain by adaptively allocating local approximations. An octree
(or quadtree in two dimensions) subdivides space by halving its cells
in a tree structure that cumulatively represents the domain of
approximation. Once the domain is divided and each cell has been
locally approximated, force at a point x can be quickly calculated by
following the tree structure to locate the appropriate evaluation
formulas. Figure 1 shows how a quadtree subdivides a region and
how a query is resolved by the tree.

Cubetree approximation is extremely fast compared to the
polyhedral method [9,10]. Each query requires an O(log N) tree
lookup and a constant time polynomial evaluation. In practice,
speedups between 300 and 100 times over the polyhedral method can
be expected. To produce the approximation, however, requires
significant up-front effort: first, an initial model or data set must be
available to approximate; then, significant computational effort is
required to construct the cubetree model. The model in [6] requires
1150 CPU hours to initialize, and used 64 processors coordinated
with the Message Passing Interface (MPI) [11].

B. Localization and Boundary Mismatches

The initial development of the cubetree algorithm did not explore
the choice of the approximation scheme within each cell; however,
the cubetree strategy can be employed with different local approxi-
mation methods. Any local approximation scheme may be used as
long as the following properties are satisfied:

1) The local approximation domains (cells) can cover the entire
region of interest (i.e., the neighborhood of a small body).
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Fig. 1 Cubetree elements illustration. Left: Gauss—Lobatto-Legendre
nodes, one-dimensional Gauss—Lobatto-Legendre nodes, and their two-
dimensional tensor product. Right: A quadtree viewed as a tree and
geometrically. Labels show the mapping between geometric and tree
views. The point represents a query; the tree view shows the query being
resolved. Cells 3-9 are leaf cells.

2) The cells can be subdivided in a way that is suitable for the
octree data structure while resulting in a covering of the original cell
and subdivided cells of smaller size.

3) For a fixed cell, the approximation scheme can be adjusted
(increased order) to meet a set tolerance.

4) For a fixed approximation order, the error in a local approxi-
mation decreases within subdivided cell.

Note that, in the case of gravity, the third requirement is satisfied
by any polynomial interpolation scheme: gravity is analytic and thus
well represented by its Taylor series locally.

The freedom to choose an approximation scheme within each cell
enables preservation of any particular property locally, that is, within
a cell. In particular, the interpolation scheme considered already
preserves continuity within a particular cell; furthermore, exactness
can be obtained locally by interpolating potential and computing the
force as its negated gradient, rather than directly interpolating the
force. This can be achieved using a Hermite interpolation scheme.?
Finally, divergence freedom can be added by using harmonic
polynomials [12] or inner spherical harmonics. For such a scheme,
cells’ domains can be taken as the circumscribing sphere around each
cube cell of the cubetree algorithm and the potential represented
within each cell.

Thus, a model that locally preserves all the desired structure of
gravity is possible; these local properties are, however, not easily
extended globally within the framework of the cubetree algorithm.
Indeed, the second requirement listed at the beginning of this
subsection implies that the local approximations will overlap or meet
at the boundaries of their respective cells, but they will not agree on
this overlap region, in general. In the original cubetree algorithm, the
overlap regions are the faces of the interpolation cube domains,
whereas the approximation functions are interpolating polynomials
which agree at shared interpolation nodes, but may not agree
elsewhere on the faces. In particular, when two cubes are of different
sizes, not all the interpolation nodes are common across a face and
the discontinuity of the approximation is more accentuated. This
discontinuity is discussed in Sec. IV.I.2 where the approximation
error in adjacent cells is demonstrated.

In particular, these discontinuities do not allow for derivatives to
be computed in the overlap regions and thus do not allow for the
computation of force as the derivative of a potential globally. Note,
however, that the jumps in discontinuity are within the overall error
tolerance, that is, the variations in the approximations are bounded
and small. As a result, if the interface region is of measure zero, as
in the cubetree algorithm, the approximation function is locally
integrable.

In summary, being based on an error tolerance requirement only,
the cubetree algorithm does not preserve smoothness (continuity of
the approximation and its derivatives), exactness, or harmonicity of
the force it approximates globally, but can represent such properties
locally, almost everywhere.

III. Boundary Regularization

In this section, a first method to overcome the lack of continuity or
smoothness at the boundary of the cubetree algorithm is presented.
Although this method can be coupled with a Hermite interpolation
scheme to provide a continuous and exact method, it requires more
demanding error tolerances and results in a larger memory footprint.
The method, however, may be adequate for some applications and is
relatively simple to implement. Moreover, it clarifies the difficulties
and necessary conditions for generating an exact scheme.

A. Boundary Matching

As mentioned previously, the cubetree algorithm is built such that
the approximated force is within a given tolerance € of the true value.

SFor the cubic cells of the original cubetree algorithm, a Hermite
interpolation polynomial can be obtained as a tensor product of one-
dimensional Hermite polynomials, in the same way as the Lagrange
interpolating polynomials used in [6] have been obtained from one-
dimensional Lagrange polynomials.
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Fig. 2 Approximation around a common face (in bold): a) extension
layer (dashed rectangle), b) matching one coordinate at a time.

In particular, in an overlapping region, two approximations P, (x)
and P,(x), which approximate the given force or potential f within
the set accuracy, coexist and each approximation is as good as the
other. Linear combinations of these two approximations that satisfy
the error requirement would also be equally fitted for the given
objectives. Notably, combinations of the form

P(x) = A(x) P, (x) + [1 = A (0)]P2(x)

with A(x) € [0, 1] and varying from zero to one, can be shown to
satisfy these requirements. Indeed, |P; — f| <€ and |P, — f| <€
implies that |P, — P;| < 2¢. This and the fact that |A| < 1, results in

[P(x) = f)] = [A(Py = Py) + Py — fl S APy — Py + [P, — f]

< 3e

Since P;(x) equals P,(x) for A=1 and P,(x) for A =0, this
approximation can be used to effectively provide a transition
between P, and P,, while keeping the error under control.

More precisely, denoting €2, and €2, two neighboring cubes in the
cubetree approximation (with respective polynomial approximations
P, and P,, as shown in Fig. 2a), a method to obtain continuity across
a boundary consists of the following:

1) Extend the approximation P, to small layer of width § across the
face in the region €2, and similarly for P,.

2) Linearly match P, and P, by choosing A(x) to be zero on the
layer boundary in €2, and one on the layer boundary in €2,.

If the common face is chosen to correspond to the yz plane of a
local coordinate axis, as shown in Fig. 2a, then A(x) can be chosen,
for example, to be the linear function (x/§+ 1)/2 to ensure
continuity. Smoothness can be ensured by taking A (x) to be smooth,
as, for example,

(1/7) arctan{(x/8)/[1 — (x/8)]} + 1/2

and the norm in the preceding estimates to include some derivative
information, such as a C* norm.

Note that the boundary-layer width must be chosen carefully so as
to retain a desired accuracy. First, this extension can be done because
P, and P, are in fact defined in all of R® (being polynomials),
whereas the control of the accuracy with the layer width § comes from
continuity of the polynomials. In particular, while |P; — f| < €in €2,
continuity and compactness of the cubes imply that a § can be chosen
such that |P; — f| < 2€ on Q; + 8,1 for example.

When the cubes meet at a corner, the preceding regularization can
be applied one coordinate at a time. For example, considering the
case of Fig. 2b, on 2, = Q; U ,, the preceding face regularization
leads to the approximation

Po(x) = Ao () Py (x) + [1 — Ao (X)]P2(x)

Similarly, one obtains an approximation Pz on Q5= Q3 U .
Then, one can apply the face regularization on the pair (€2, P,) and

Because each face regularization requires a small extension and an
associated loss of accuracy, the method requires a slightly better
approximation inside the cube to obtain a uniform, continuous
approximation across boundaries that still meet a set error tolerance.

IThis set is defined as Q; + § = {x € R": |x — y| < § for some y in Q,}.

With the preceding estimates, the approximation would be within 5S¢
for aface and 17¢ across a corner, thus requiring € (the approximation
error inside the cubes) to be an order of magnitude smaller than the
desired maximum tolerance. This can be taken into account when
building the model but results in a larger memory footprint of the
model. However, once built, the cost of force evaluation is a small
constant overhead that does not penalize the efficiency of the
cubetree algorithm. This constant time overhead is associated with a
test to determine if the state lies within a boundary layer and, if so, to
evaluate the linear combination of P; and P,.

Finally, note that, if no requirement is imposed on the derivative of
the interpolating polynomials P, and P,, the derivative may not
satisfy good error properties and the interpolation of the potential
with this modified cubetree algorithm would not lead to a good force
approximation. On the other hand, using a Hermite interpolation
scheme (or one based on harmonic polynomials, as discussed in the
previous section), the preceding regularization offers a method to
provide a smooth and exact scheme, albeit at the cost of a larger
memory footprint. (The size of a cubetree model depends on the
number of coefficients stored per cell and the overall number of cells.
In the case of a Hermite interpolation, the degree of the interpolating
polynomial is larger than that of a Lagrange polynomial, for equal
errors, and thus results in a larger model.) The exactness is obtained
by approximating the potential instead of the force directly. The
forces are simply obtained by differentiation.

B. Partition of Unity

The preceding regularization can be thought of as applying a
partition of unity with cube domains. A partition of unity consists of a
family of functions W; with compact support that covers a given
domain D in such a way that 1) each point in the domain is contained
in the support of only a finite number of functions in the family, and
2) the sum of these functions adds to the unity, one, at that point. The
functions W, are generally assumed to be of a given smoothness, say
continuously differentiable, thatis, ¥; € C !, for example, so that any
function f on D with the same smoothness properties as W; can be
represented as a sum of functions with compact support

2V @f )

Partitions of unity are generally used to extend local results about a
class of functions to the whole domain of definition D.

In our case, the boundary-layer matching function A(x) can be
extended beyond the layer to be uniformly equal to one inside a cube
and zero outside the cube augmented by the layer, and the sum of
all the A functions is equal to one at any point of space covered by
the cubes. That is, the uniformly continuous approximation can be
represented as

U~ Y he(®Pe()

cubesC

and the family {A_.} thus forms a partition of unity.

The partition of unity A, is not unique and other choices are
possible and have been applied to the solution of partial differential
equations [13—15]. In particular, the use of harmonic polynomials in
conjunction with partition of unity showed faster convergence rate
than classic finite element methods for solving Laplace’s equation
[14].

The natural extension of the cubetree algorithm in terms of
partition of unity emphasizes two fundamental properties that guide
us in the following section:

1) The local nature of the approximation scheme, and thus the
reduction of the approximation to the right selection of the approxi-
mation function space: although the initial cubetree algorithm is
based on interpolation to match the actual force at selected points
(a useful property for model update based on flight data, for
example), the interpolation of a function and its derivative at selected
points is not the most versatile function space in which to approxi-
mate a given function. Rather, approximation schemes based on



1850 COLOMBI, HIRANI, AND VILLAC

integral norms between functions lead to more uniform approxi-
mations, as will be discussed in the next section.

2) The importance of the base domain, as opposed to its
boundaries: having a covering associated with a partition of unity, the
patching is done automatically with the associated partition of unity
functions.

IV. Exact and Continuous Spline Approximation

Although the method discussed in the preceding section offers a
smooth and exact scheme, it requires the error tolerance to be fixed to
stricter standards than what is required by applications and results
in larger models. In this section, a different approximation scheme,
which results in models of similar size as the original cubetree while
preserving exactness and some degree of smoothness, is presented.

To create an exact approximation, proceed as done previously by
approximating the potential rather than the force. Taking the negated
gradient of the approximated potential will provide force, and
exactness is automatic: F := —VU. To ensure smoothness to allow
the approximated potential to be derived, U is constructed in a
function space that includes only functions with the desired
continuity. Put more concretely, choose a function space S with
spanning set B such that ¢ € B3 observes,

p(x) € C!
$(x) and  V(x)

have compact support. An example of such a spanning set 3 with
elements satisfying these properties is one generated by basis
refinement of a B-spline basis.

A. Basis Refinement

Basis refinement, or CHARMS [16], is an adaptive refinement
framework developed for physical simulation. In the CHARMS
framework, adaptive refinement is performed on functions forming B
(known as scaling functions) rather than the elements that describe
the domain. Once the scaling functions are refined, the domain
elements are adapted to fit the needs of the scaling functions (i.e., for
the purpose of integration). Figure 3 gives an example of the
refinement of a degree 3 B spline in 1-D.

The refinement relation for scaling functions ¢ € B is the
fundamental unit of adaptivity in CHARMS. A refinement relation
gives a recipe for representing ¢ with a linear combination of dilated
and translated versions of ¢, known as ¢’s children C(¢); see Fig. 3.
At the nth iteration of refinement, the spanning set B, is constructed
by replacing elements ¢ € B,_, with C(¢). Because linear com-
binations of C(¢) can represent ¢, linear combinations of B, can
represent 3,_,. Thus, the approximation space of the nth iteration
S, always contains the previous space: S, 2 S,_;. Note that this
algorithm does not always produce a basis. For some applications
(including this one) the linear independence property of a basis is not
necessary. In this case B, are merely spanning sets of the space S,,.

The advantage of CHARMS is that one does not need to develop
machinery for handling discontinuities at T junctions. T junctions
arise naturally in adaptive meshing. They get their name from their
appearance in two-dimensional quadrilateral meshes, where the

X X X X X

X X X X X X X X X
Fig. 3 Refinement relation for a degree 3 B spline. The xs below the
axis indicate locations of knots. In this refinement, every pair of knots in

the original is split by a new knot halfway between them. The result is a
new set of B splines that are translations and dilations of the original.

common edge of two squares intersects the edge of a third cell at an
interior point. T junctions are seamlessly handled by the virtues of the
spanning set: if its span does not contain discontinuous functions,
then no discontinuities can arise. Furthermore, as long as the refine-
ment observes the continuity conditions, no subsequent spanning set
will permit discontinuities. Thus, CHARMS is the foundation upon
which the continuous adaptive approximation considered in this
paper is built.

Before going into more detail, the following paragraph introduces
the scaling function used: the B-spline basis function ¢.

B. One-Dimensional B-Spline Basis

Let 7 := {t;} be a nondecreasing sequence in R with N elements,
1o to ty_;, called the knot vector. The jth B spline of order k for the

knot vector 7 is designated B; ; . and is defined as

it <t<ty,
0 otherwise

Bjon(x) i= { M

t; —1
LBjJrl,kfl.r(t) 2)

Bj,k.r(x) = t —t
JHk+1 Jj+l1

t—t;
—L B 1)+
itk =1

For B splines to operate in the CHARMS framework, they must
observe a refinement relation. Not all B splines observe a refinement
relation, however, one common case does: T with uniform knot
spacing and knot multiplicity 1. To refine B,, add a knot between
every pair of knots in z; more precisely, insert (;.; + t;.;4)/2 after

tiyi intforie0,1,...,k; seeFig. 3.

C. B-Spline Basis in K-Dimensions

The K-dimensional tensor product B spline B, is defined by the
product of K one-dimensional B splines (each with an individual
knot vector) where each spline handles one dimension:

K
Bj,k,r(x) = 1_[ Bj(,,k.rd (x4)s x=(x,...,xg) 3)
d=1

In Eq. (3), 7 is simply a list of knot vectors, one for each dimension,
and t, is the knot vector for dimension d. Similarly, j is a multi-
index, where j,; specifies using the j,th B spline of 7, for dimension
d. For example, in three dimensions, Eq. (3) is

Bji~ (x) = Bj i, (xy )sz,k.rz (x2)3j3.k.r3 (x3) “4)

Refinement in multiple dimensions treats each dimension
independently; in our case, each dimension is refined by halving the
distance between knots in the knot vector, as described at the end of
Sec. IV.B. Subsequent spaces of refined K-dimensional B splines are
denoted with the S, and B, notation.

The scaling functions ¢ which constitute a spanning set 3, for an
adaptive approximation of gravitation can now be defined. Let ¢ be a
three-dimensional B spline of degree k = 3 with uniformly spaced
knots of multiplicity 1. Modeling potential with

Zai¢i
i
means force is modeled by

Z“iv¢i

Thus, the modeled force F, having lost 1 deg of continuity from
differentiation, is C' and exact.

D. Linear Independence of 13,

Refinement by substitution with high-order B splines does not
guarantee linear independence of the spanning set 53, [16,17]. Even
in one dimension, simple refinements can lead to linear dependence
in B,,. Figure 4 gives several one-dimensional examples.
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Fig. 4 Examples where refinement does not produce a basis. See
Sec. IV.D for details.

As Fig. 4 indicates, the tricky cases are between different levels of
refinement. Linear independence between levels can be guaranteed
with additional bookkeeping [17], but, for function approximation,
the extra effort is not necessary. In fact, all that is needed for function
approximation is linear independence within each level of 53,,. Within
alevel, the only difficulty is to capture the repeated children between
nearby B splines. As Fig. 4a shows (compare the second and third
rows), the adjacent B splines contribute to the children of one
another.

In Fig. 4, the top row shows dashed B splines are to be refined and
black B splines are not. In Fig. 4a, the second and third rows are the
left and right refinements, respectively, and the final row shows the
combination of these refinements. Lighter shading indicates the sup-
port of the middle scaling function in By; notice the shaded region is
completely covered by a basis capable of representing the unrefined
B spline. The example in Fig. 4b shows that restricting the domain
of the approximation can make otherwise linearly independent
examples, linearly dependent. The lighter shaded region is the
domain of the approximation. The refinement of the dashed functions
would not normally completely represent the black function because
the children of the dashed functions do not cover the support of the
black function (which is depicted as the union of darker and lighter
shaded regions). In this case, however, the restriction to the lighter
region means that they do.

The simplest way to avoid duplicating a given child is to record the
included scaling functions of each level of B, with a bitmap or set
[16]. The problem with the bitmap approach is that it is not adaptive:
every function, included or otherwise, is explicitly represented. A set
is adaptive, but, in practice, a set data structure is too inefficient to
store individual scaling functions.® This problem will be revisited in
Sec. IV.G.

The following sections describe an approximation method that
does not require linear independence between the levels of B,,.

E. Least-Squares Approximation

Let U:[s,t] CR* - R and pick a basis B={¢;}. A least-
squares approximation chooses coefficients to minimize the distance
between U and its approximation in 3 given some norm. In many
applications (particularly, scattered data interpolation [18]), a
discrete norm is made by the collected data to be fit [19]. In the appli-
cation presented in this paper, data points can be placed wherever
convenient, which provides the flexibility of picking any norm that
suits the approximation objectives. For example, one can use the
norm in L2, the space of square integrable functions, or in H', the
subspace of L2, in which first derivatives are also square integrable.
Before going further, let us formalize the minimization problem.

Keep U and B as described in the preceding paragraph and pick an
inner product space in which

U= a0,
J

**For example, the C + + Standard Template Library set has 24 B of
overhead per function (three pointers). In the model considered in this paper,
that would cost about 860 MB of overhead, the same size as the storage
requirement for the functions themselves (three-dimensional location)!

is sought to be minimized, or, equivalently,

U= ;0,0 ©)
J

where || - || is the norm induced by the inner product (-,-). By
differentiating the quantity in Eq. (5) and setting the result to zero,
a linear system that solves the minimization is produced: Mx = b,
where

Mi,j = (¢iv¢j> (6)

b= (U, ¢;) @)

In this linear system, M is often called a mass matrix. The next natural
question is with what norm shall minimize

U= ;e
J

For the application of this paper, both U and F should be
approximated; thus, the most obvious choice is the H' norm,

Vo) = [ 1w+ Y swa ®)

Il = v {F.f) ©)

as it incorporates both gravitational potential and force.

Implementing either inner product requires numerical integration.
The approximation used in this work is based on cubic polynomials;
thus (¢;, #;), that is, creating the mass matrix, will necessitate
integrating degree 6 polynomials. A degree 6 polynomial is exactly
integrated with Gauss—Legendre quadrature of order 4 [20], making
it a natural choice for creating the mass matrix. The right-hand
side, (U, ¢;), will also use order 4 Gauss-Legendre quadrature.
This decision can be justified by looking at the initial goals: to
approximate gravitation with cubic polynomials. Therefore, order 4
Gauss—Legendre quadrature will be as accurate (for the right-hand
side) as the gravity approximation. Finally, the integration domain
2 is split into a hexahedral mesh that mimics the break points of
the piecewise polynomials defining ¢;. Whenever ¢; overlaps with
another scaling function from a finer level ¢;, the hexahedral mesh
follows the break points of ¢;. This mesh defines the quadrature
domains over which Egs. (6) and (7) are evaluated.

F. Solving B, with Linear Dependence

This process works very well for tensor product B splines, but
will fail once the refinement process begins as the mass matrix is
singular when B,, has linear dependence. To accommodate linear
dependence between levels of B,,, the function sets 3, are determined
hierarchically: each B, is formed of nested tiers 77 for0 < p < n.
They are nested in the following sense: 7° is the coarsest and
contains exactly the scaling functions necessary to cover the domain
Q. 77 contains scaling functions from the pth level that are
refinements of scaling functions unique to 77~!, and anything from
7P~ that is not refined. In other words,

peT?=¢eTP! or ¢ €TP! and peC(¢) and ¢TP72]

where 7! := @. Although B, is defined similarly to 7 7, they are not
the same. In B, there is no restriction on which scaling functions
from B,_, are refined; however, 77 may only refine ¢ € 777! that
have already been refined p — 1 times. Figure 5 gives a one-
dimensional example, and demonstrates the difference between 5,
and 77.

To find the coefficients for B, the tiers are solved one at a time by
iterating through 77 according to the following procedure. First,
solve 7 using Eqs. (6) and (7). Then, solve recursively 77 by
assuming the coefficients of 77~! and separating 7 ? into two sets N’
and R, defined such that
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Fig. 5 Examples of tiers 77 that constitute a given spanning set 13,,. Dashed B splines show which are to be refined at the next tier. Notice the difference
between 7! and 13, in the third iteration. This demonstrates that 13, may refine any scaling function from 13,_;, but 77 only refines those scaling functions

unique to 771,

p;eN=¢eTr' ¢ eR=3¢ T’ and ¢; €C(¢)
In other words, R contains the scaling functions that come from
refining 77!, whereas A/ contains those which are carried without
refinement from one tier to the next. Then, the functions ¢; € 77 are
organized such that the first |R| scaling functions of 77 are the new
scaling functions, and the rest are from the previous tier 7 »~!. That s,
¢; € R when j < |R|and ¢; € N otherwise. Next, the mass matrix
M of T7 is created as usual via Eq. (6), and the scaling functions that
come from earlier levels are removed by taking their coefficients
from the solution to the previous tier, 77~'. This is achieved by
removing the last | /| rows of M and b, because these equations have
already been solved in 777!, This results in the underdetermined
system M'x = b’. Then, using the coefficients from 77!, remove
the last scaling functions in A/ by subtracting their contributions from
the right-hand side, thus creating b. Finally, solve the linear system
MxP = b.

Expressed as equations, the process can be summarized as follows:

D

Mi;=M,; fori<|R|. j<|T7|
2)
bi=bj— Yy Mipr' fori<|Tr|.  j<|T7|
J
3)
M j=M; fori<|R|. j<|R]|
4)

X =M"'h

where xP~! is a vector of zeros for the first | R | entries and coefficients
gleaned from solving 77! for the last |A/| entries. Finally, the
coefficients for 77 are created by replacing the |R| zeros in x”~! by
xP. This process is continued until every tier 77 of B,, is solved, and
the coefficients of 77! become the coefficients for 13,.

It is worth noting that, not only does this process permit linear
dependence among the levels of B, it also reduces the size of
the given linear systems to solve: in practice, the last || rows of
M are never needed, and so they need not be created. This savings
can as much as halve the total size of the mass matrix being solved,
which is not insignificant. For example, the final iteration of the
model required 69 GB; doubling this makes for a very large matrix
indeed.

G. Implementation Details

In the subsequent sections, implementation details that allow the
proposed model to efficiently represent small-body gravitation are
described.

1. Representation of B,

This section focuses on representing B, in a way suitable to
preparing and using the approximation to small-body gravitation
presented in the previous section. Two concerns dominate the
design: memory efficiency during model creation and computation
efficiency during force reconstruction. The former is the primary
bottleneck of the coefficient fitting stage and dictates the number of
iterations of refinement the algorithm will permit. Ideally, as much
memory as possible is given to the mass matrix, meaning the chosen
representation of B, should be as lean as possible. The latter is the
whole reason for doing this in the first place. Fortunately, both
problems are addressed by the same data structure.

The implementation uses patches of B splines with uniform knot
spacing. Each patch P; is constructed by a tensor product B spline
representing many B splines, P; := {B,; .}, with a single data
structure. In this way, any number of B splines can be represented in a
cuboid layout with only three data points: the lower bound of the
support of the patch, the upper bound of the support of the patch, and
the knot spacing for all B splines of the patch.

Representing B, this way has two advantages. First, it makes
representing B, very compact. For example, the model developed in
Sec. IV.L.1 requires 1.5 MB of storage to represent 18 million
B splines. The second advantage is in evaluating B,. The most
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Fig. 6 The patch splitting process. Rectangles show the support of each patch, and markers show the peaks of the scaling functions: a) there are two
patches; b) result of each patch being refined by replacing the present scaling functions with their children; c) a 3 x 5 block of scaling functions are
redundant, so three patches are produced by one patch being split to avoid the redundant region.

efficient B-spline evaluation procedures compute neighboring
B splines of a knot vector simultaneously [19]. Using the B-spline
patch model captures redundant computation of neighboring ¢;
whenever they belong to the same patch.

2. Refining Patches

Refining a patch is, semantically, the same as refining each
B spline within the patch individually. As each patch is represented
by a tensor product B spline, the new patch is constructed by inserting
an additional knot between the knots forming each knot vector of
the tensor product. In terms of the chosen data structure, this amounts
to dividing the knot_distance by two. However, just as with
individual scaling functions of Fig. 4a, some patches will share
children. That is, the basis refinement of CHARMS, used to properly
approximate the gravity field at a given location, causes some overlap
of the patches. Thus, to accommodate redundancy in the children,
some patches must be resized to avoid each other; a process referred
to as patch splitting in the following.

Consider the two-dimensional example in Fig. 6. From a — b,
two adjacent patches are refined; oblivious to one another, they
generate redundant children. To eliminate the repeated children, one
patch is selected to avoid the other, for example, b — c. The number
of additional patches created by this process, which should be kept as
small as possible to avoid large memory footprints, is reduced by
always splitting the patch that contains fewer scaling functions. (This
heuristic was found to globally produce fewer patches than always
splitting the patch that locally creates fewer patches.)

Therefore, the proposed algorithm for refinement is 1) loop
through patches and refine those that need refinement, and
2) pairwise compare patches to avoid overlapping refinements
using patch splitting. The pairwise comparison may be efficiently
implemented with an octree data structure [21], but, in our expe-

Geometric View

| B

Tree View

AN SN AN

Fig. 7 A bounding volume hierarchy. The objects organized are the
shaded boxes. On the left is a geometric view. The first level shows the
bounding box in black, the second level shows it in black and gray, and
the last level only the underlying objects remain. On the right is a tree
view of the bounding boxes.

rience, the cost of the straightforward O(N?) pairwise comparisons
is small compared to solving a matrix with 20 million unknowns.

3. Computing Gravity with B,

Although the favorable efficiency of evaluating the B splines of 3,
with patches has already been mentioned, a mechanism for finding
the patches that affect a given query still needs to be defined. For this,
a bounding volume hierarchy (BVH) [22] will be used.

Bounding volume hierarchies are tree data structures for orga-
nizing objects with spatial extent. In this sense, they fill the same roll
as octrees, but there is an important difference: whereas octrees
subdivide space, a BVH subdivides groups of objects. Two recursive
operations characterize a BVH: Build and Find. Build takes as
input a list L of objects and creates one node.

BoundingVolume finds the upper and lower bounds of the
objects in L. Split divides L into two sublists L, and L,, which
form the input to the next level of the tree. A poor split will mean the
bounding volumes of the subsequent levels do not shrink rapidly, and
result in poor Find performance. The function Split sorts L by
the widest dimension of its bounding volume; then L, and L, split the
sorted L evenly. Figure 7 diagrams the process of building a BVH.

Find recalls all the objects containing a point query by
recursively traversing the BVH. At each level, Find recursively
follows all children that contain the query point. When Find
reaches a leaf, the object contained is appended to the output.
Following the Sp1it described previously, the tree will always be
balanced; hence, most queries will only require O(log N) effort.
Note that the running time will depend on the query and how the
bounding volumes are organized within the tree. For example, a
perfectly bad Sp1lit canforce Find to visit every node in the BVH.

To evaluate B, efficiently, its constituent patches are organized in a
BVH. The bounding volume of a patch P is the union of the supports
of ¢; (i.e., where itis nonzero) for ¢; € P. Findretrieves the relevant
patches with the BVH and each patch is evaluated.

H. Model Creation
This section concludes the description of model creation.

+ +
L ] - L ] - + o +
- = . + + +
u - ® + + 4 +
. +
] - L] L] ] + + + +

Fig. 8 Detailed view of initializing 13,. Left: 2 is the interior of the two
boxes. Right: Patches are placed so the the domain of patches covers the
cuboid it came from. This creates redundancies, which the overlapping
markers (crosses and squares) show. Shaded regions show the domain of
each patch.
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Fig. 9 Continuity comparison of cubetree and B-spline method. In each case, the absolute error in the x component of the force is measured along a 50 m
ray. The dashed line at y = 0 represents the actual force. As the T junctions do not occur in the same places for each model, different rays are measured.
The left graph shows cubetree, and the right graph shows the B-spline method.

1. Domain Representation and Creating 13,

The domain of approximation €2 plays three roles during a model
creation: 1) it provides the domain over which the inner product
[Eq. (8)] is evaluated; 2) it seeds 3, with B-spline patches necessary
to cover 2; and 3) it defines the regions over which the error of the
computed approximation is measured. The simplest solution is to
represent the region around an asteroid as a cube, but this needlessly
includes the interior of the asteroid. To avoid as much of the interior
as possible, an octree is used, and Subdivide whenever a cuboid
region intersects the asteroid. To avoid subdividing forever, a lower
bound on the cuboid size is provided.

Once a domain octree €2 has been constructed, B, is created to
cover 2. Each octree cuboid is considered in isolation and a patch is
placed to cover it with a basis of B splines over 2. This creates
redundant B splines near the boundaries of octree cells, which are
removed using patch splitting; see Figs. 6b, 6¢c, and 8.

2. Error Estimation and Creating B, |

To estimate relative error, the octree domain €2 is sampled. Within
each cuboid w € 2, the error is randomly sampled at a rate of one
sample every 10 m>. Any time the relative error of a sample in @
exceeds some threshold, every patch intersecting w is marked for
refinement. Any time no samples in w exceed the threshold, w is
removed from the list of domains to check at the next iteration. At the
end of the error checking process, all patches requiring refinement
are refined and patch splitting keeps them from producing redundant
scaling functions.

I. Numerical Experiments with 1998 ML14
Now, let us turn our attention to approximating the gravitational
potential and gravitational force of asteroid 1998 ML14. The

polyhedral model for the chosen asteroid is the same as the one used
in [6].1

1. Notes on Model Creation

The domain of approximation began at (—1250,—1250,
—1250) m and extended 2500 m in each direction, where the origin
is the center of mass of the asteroid model. (As a point of reference,
the radius of 1998 ML14 is 2500 m.) The smallest allowed cube in

""Data available online at http://www.psi.edu/pds/resource/rshape.html,
EAR-A-5-DDR-RADARSHAPE-MODELS-V2.0 [retrieved 10 June 2007].

the octree domain was 2500/27 ~ 19.5 m to an edge. The largest
cube was also limited to 2500/2* ~ 156 m to an edge. The relative
error threshold for refinement was set to 5 x 10~7, which is well
beneath the requirement for mission design [23]. The Conjugate
Gradient solver’s relative convergence tolerance [24] was set to
107!, This model was created in 4500 CPU hours on a parallel
computer using the MPI [11] (64 processors for approximately 80 h)
and occupies 210 MB of memory. B, is composed exclusively of
patches with knot spacing 2500/27 m, B, ends the iterations with a
mix of knot spacings at 2500/2°-2500/2" m. To cover the region
outside the octree, spherical harmonics of degree and order 12 were
employed. The resulting model will be referred as patches of uniform
B-splines tree, or pubtree for short, in the remainder.

2. Continuity at T Junctions

Next, continuity between levels of refinement is tested. In Fig. 9a,
the error in the cubetree’s force at a T junction is plotted and the
discontinuity is readily apparent at 935 m. Comparing this to the
same plot for a T junction in the B-spline model, Fig. 9b, one can see
that no discontinuities exist; in fact, the only evidence of a T junction
is a slight shift in the oscillatory pattern at 770 m.

3. Error Measurements

This section explores the structure of refinement by plotting the
relative error in potential and force. Portions of the domain are
examined in Fig. 10, which plots relative error in gravitational
potential and gravitational force along the z = 0 plane. Note that Uis
about 3 orders of magnitude more effective than F. Therefore, for
applications where an approximation to potential is not needed, a
direct approximation to force (as in cubetree) may be easier to create.
A white band, extending approximately 60 m from the surface, is
visible near the interface of the asteroid and space. This band is
where the force approximation fails to make 107, The same band
for 107> error is 40 m from the surface. Future improvements to
patch refinement may shrink the band further, though the achieved
accuracy seemed sufficient to demonstrate the model and for many
applications.

Compared to cubetree, this model appears to be less accurate,
despite using similar error bounds. Figure 11 plots cubetree force’s
relative error in the same region as Fig. 10. This effect comes from the
granularity and convergence rate of the cubetree compared to the
pubtree: in the cubetree model, the coarsest refinement is 312.5 m
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Fig. 10 Relative error of pubtree across the complete domain. The interior of the asteroid is not measured and is left black. Error is plotted on a log scale.
Error a) across the entire domain in potential, b) across the entire domain in force, c¢) near the surface in potential, and d) near the surface in force.
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Fig. 11 Relative error in the force produced by cubetree. The interior of the asteroid is not measured and is left black. Error is plotted on a log scale. Left:
the error over the entire domain. Right: sample of the error in a region abutting the asteroid. Compare these to Fig. 10.

and contains tensor product degree 6 polynomials; pubtree’s coarsest
refinement is only 156 m and contains tensor products of degree 3
piecewise polynomials. Therefore, not only does a single refinement
of cubetree affect a bigger region, it also has a higher rate of con-
vergence, especially away from the boundary where gravity is
smooth. For example, compare the plots of Fig. 9; both plots show the

absolute error on either side of a refinement. Pubtree approximately
halves the error across the barrier, whereas cubetree error falls about
1 order of magnitude.

Cubetree’s aggressiveness means a direct comparison between
pubtree and cubetree in terms of memory footprint and speed is not
entirely fair. Also, quantitative comparisons between trajectories of
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the models will tend to favor cubetree, as will be seen in the following
section. Of course, quantitative improvements over cubetree was not
the goal of this research. Furthermore, both models easily achieve the
target accuracy of 1075,

4.  Refinement Sequence

Figure 12 shows the model as developed over three iterations.
After each iteration, regions with high error are reduced (e.g., the
band of white surrounding the asteroid, which shrinks after each
iteration).

5. Trajectory Integrations

The following trajectory simulations use the same models as the
ones from [6], as well as the pubtree model presented in this paper.

Pubtree trajectories are generated using the pubtree force model.
Integration is done with the embedded Runge—Kutta Prince—
Dormand (order 8,9) method using relative error tolerance 10~!% and
absolute error tolerance 1076,

A family of retrograde orbits starting between 600 and 1000 m
from the asteroid center has been integrated. Initial positions
were chosen close to the equatorial plane, and initial velocities did
not contain large components outside the plane. The magnitude
of the velocity was clamped to within 0.65 and 0.75 of escape
speed. Simulations ran for five days of ballistic motion with each
model (pubtree, cubetree, augmented polyhedral, reference), where
impacting trajectories were thrown out. The position and velocity of
the orbiter was recorded every 5 min of simulated time.

This experiment was repeated for 993 trajectories. For each
trajectory, the maximum difference in position and velocity between
the cubetree trajectory and reference trajectory has been measured.
Figure 13 is a histogram of the errors in position and velocity. For
comparison’s sake, the same histograms for the cubetree model are
presented in Fig. 13. Cubetree’s superior relative error is evident in
the histograms, however, the shape of the histograms are similar.
On average, pubtree trajectories were 270 times faster than the
augmented polyhedral, compared to 301 times for cubetree.

J. Discussion

The CHARMS framework, coupled with the hierarchical
coefficient fitting that was developed in this paper, has produced
an adaptive approximation to gravitational potential and force. The
force is exact and continuous, and the accuracy is within the
threshold for the vast majority of the domain.

1. Trajectory Integration

During the trajectory integration experiments, pubtree was found
to be approximately 0.9 times the speed of cubetree. However, single
evaluation tests actually estimate the speed at 2 times cubetree. The
discrepancy comes from the integrator’s adaptive time stepping
strategy: on average, pubtree trajectories required 1.8 times more

1000 1000

500 500
=500

=500

-1000 -1000

-1000 =500 0 500 1000 -1000 =500

10° 10" 16° 10°
B,

[ —

107 10° 10° 107 16°

samples than cubetree. We believe this comes from the higher
amplitude of the oscillations in pubtree’s force model; see Fig. 9.
Reducing the amplitude by tightening the error threshold would
resolve this, thereby increasing the speed of pubtree.

2. Patch Refinement

As described in previous sections, pubtree employs patch refine-
ment: if the error is bad in one part of the patch, the whole patch is
refined. This approach becomes problematic once the regions with
high error are smaller than the patches. In this case, every iteration
will require a complete patch to be refined, effectively destroying
adaptivity. To wit, the iterations of pubtree ended exactly for this
reason.

The solution to this problem is subpatch refinement, implemented
with patch splitting and hierarchical error estimation. First, error
estimation should follow an octree structure: each time a cuboid of
the error octree is found to contain error, it should be subdivided
before being checked again. In this way, the error is localized. Then,
instead of refining whole patches, they are only split so that the
scaling functions affecting the localized error are refined. Following
this algorithm would reintroduce adaptivity and permit further
iterations on pubtree.

3. Linear Independence

Although a linearly dependent spanning set 53, has been pursued
in this research, with sufficient implementation effort, a linearly
independent basis could also be devised. A comparison between the
methods would be a valuable analysis.

V. Divergence-Free Approximations and Challenges
in Preserving Harmonicity

The previous section described exact and continuous approx-
imation schemes, but did not address harmonicity of the gravitational
potential. The fact that the Laplacian of the potential is zero in free
space results in a divergence-free gravitational force. Although the
converse is not necessarily true, a first requirement on an approxi-
mation scheme consists of requiring the force approximation to be
divergence free.

A divergence-free approximation of the force can be obtained by
projecting an approximate vector field onto the space of divergence-
free fields. According to the Helmholtz decomposition, a vector field
in a simply connected domain can be decomposed into a divergence-
free and a curl-free part:

F=Fdiv+Fcurl with V'FdiVZO and VXFcuﬂ:O
The presence of holes and handles in a domain results in a nonzero
harmonic part in the preceding decomposition. This more general
result is called the Hodge (or Helmholtz—Hodge) decomposition

[25]. Such decompositions are commonly used in computational
incompressible fluid mechanics [26]. Several methods have been
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Fig. 12 Relative error over the sequence of refinement. The interior of the asteroid is not measured and is left black. Error is plotted on a log scale.
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Fig. 13 Histograms of errors in position and velocity for 993 retrograde pubtree trajectories integrated for five days and observed at 5 min intervals.
Top pair of graphs are pubtree position and velocity errors, whereas the bottom pair correspond to the cubetree position and velocity errors.

proposed in the literature, such as [27-29], and so the analysis of
divergence-free approximations alone has not been considered in this
paper. However, these projection can be performed after the fact, on
the already-developed approximation schemes presented in the
previous questions. That is, the imposition of a zero divergence of the
vector field can appear as a correction on the force evaluated from the
previous approximation schemes.

Note, however, that most of these schemes apply only to forces
(vector fields) and do not allow a priori for a modification of the
potential that would then generate a divergence-free field upon
differentiation. Tong et al. [28] do compute the potential for the
divergence-free part, but the techniques as presented there work
only for piecewise constant vector fields. In effect, the continuous
and exact approximation schemes described in this paper and the
work existing on divergence-free projections present significant
challenges in merging.

To better understand this remark, let us comment on some classic
results about harmonic functions [12]. First, note that a force deriving
from a potential that is also divergence-free satisfies Laplace’s
equation. That is, the potential is a harmonic function, and is thus,
together with all of its derivatives, an analytic function. Thus, an
approximation scheme aiming at being both exact and divergence
free must provide an analytic approximation.

More important, the solution of Laplace’s equation is unique given
continuous data on the boundary of a bounded region with Lipschitz
boundary. For example, within the cubetree framework, the knowl-
edge of the function on the boundary of the cubes would imply that
the approximated function be completely determined inside the
cubes. In particular, this leaves no freedom in matching the deriv-
atives at the boundary. Unless the boundary data of each cube can be
prescribed globally, two adjacent cubes sharing a face will only be
continuous and not C! across the common face.

To illustrate these difficulties in the case of the boundary-matching
method, let us consider the setting of Sec. III, while assuming that
the approximation polynomials P; are harmonic. The blending of
the functions P; and P, involves products of functions of the form
A(x)P;(x). The Laplacian of these products is given as

AAP) =AAP + PAL + 2(Vi - VP)

Even if one chooses A to be harmonic, so that the first two terms in the
preceding right-hand side vanish, the remaining term imposes a
constraint on the derivative, which is not free to choose, as discussed
in Sec. II. A straightforward way to set all the terms to zero consists of
taking A to be a linear function. In that case, however, the smoothness
is lost and only a continuous approximation is obtained. Note that,
although the partition of unity method has been used with harmonic
polynomials in [14], the concern was about convergence (i.e., the
measure of the error performed when compared to a true solution)
rather than the harmonic properties of the approximation. In par-
ticular, these methods, as well as finite elements methods, only
consider the problem in its variational formulation, thus losing some
of the smoothness of the problem.

The preceding properties illustrate the basic fact that being
harmonic in a small region has some global implications. In effect,
approximating the potential by a harmonic function would consist of
solving exactly Laplace’s equation, which indicates the close link
between preserving harmonicity and solving exactly Laplace’s
equation for nonconvex sets. These remarks, in particular, indicate
the close link between function representation and the numerical
solution of partial differential equations. The regularization of the
cubetree algorithm, for example, was initially devised independently
of the partition of unity method before realizing its equivalence to the
construction of a partition of unity used in solving partial differential
equations, whereas the spline approximation has been motivated by
higher-order finite elements methods.

VL

Continuous and exact approximations of gravitational forces in the
neighborhood of small bodies has been described. These approxi-
mations preserve some degree of smoothness and were obtained in
the setting of adaptive piecewise polynomial approximation initially
considered in the cubetree method.

Conclusions



1858 COLOMBI, HIRANI, AND VILLAC

Although adaptive schemes are necessary for force approximation
near small bodies, it has been shown that the complexity of imposing
an extra structure on such schemes may, in fact, not be worthwhile
for spacecraft applications due to the short integration timespan
generally encountered. In particular, the distinction between small
discontinuities compared to small oscillations in the error become
subversive as the error tolerance is tightened.

The ability to represent exactness is, however, important from a
theoretical viewpoint as it illustrates the close link between the force
representation problem and the solution of the partial differential
equation defining the potential. In particular, it has been shown how
the linear dependence among the basis functions, appearing when
refinement patches are considered, can be overcome with the intro-
duction of hierarchical refinement; a contribution that may also be
useful to higher-order finite element methods.

Moreover, these methods open the way for setting a standard for
small-body, close-field representation similar to ephemeris models
for planetary positions that offer flexibility in updating the models
and provide fast force evaluation routines. Although such model
building is initially computationally expensive, the locality inherent
in these adaptive schemes make model updates and force evaluations
extremely fast. As discussed in the paper, trajectory integrations can
be 2 orders of magnitude faster than the polyhedral method.
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